Home
Class 10
MATHS
sin ^(2) A cos ^(2) B-cos ^(2) A sin ^(2...

`sin ^(2) A cos ^(2) B-cos ^(2) A sin ^(2) B= sin ^(2)A -sin ^(2)B`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin ^(2) A cos ^(2) B+cos ^(2) A sin ^(2) B+cos ^(2) A cos ^(2) B+sin ^(2) A sin ^(2) B=1

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

sin A + sin B + sin C = cos A + cos B + cos C = 0then (A) cos (AB) = - (1) / (2) (B) sin ^ (2) A + sin ^ (2) B + sin ^ (2) C = 0 (C) sin ^ (2) A + sin ^ (2) B + sin ^ (2) C = (3) / (2) (D) cos ^ (2) A + cos ^ (2) B + cos ^ (2) C = (3) / (2)

sin ^ (2) A + sin ^ (2) (AB) -2sin A cos B sin (AB) = sin ^ (2) B

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

The value of sin^2 A cos^2 B + cos^2 A cos^2 B+sin^2 A sin^2 B + cos^2A sin^2B is ……..

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

Prove the following identity : sin^2 A cos^2 B + cos^2 A sin^2 B + cos^2 A cos^2 B+ sin^2 A sin^2 B = 1 .