Home
Class 12
MATHS
int- 1^2(|x+1|+|x|+|x-1|)dx...

`int_- 1^2(|x+1|+|x|+|x-1|)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(2)(|x+1|+|x|+|x-1||dx

Evaluate: int_(0)^(1)|5x-3|dx( ii) int_(0)^( pi)|cos x|dx( iii) int_(-5)^(5)|x-2|dx( iv )int_(-1)^(1)e^(|x|)dx(v)int_(0)^(2)|x^(2)+2x-3|dx(v)int_(1)^(4)(|x-1|+|x-2|+|x-3|)dx( vi) int_(1)^(2)|x^(3)-x|dx

int _(1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

int_(-1)^1 max (2-x,2,1+x)dx is

If I_(1)=int_(1-x)^(x) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(x) sin{x(1-x)}dx , then

int_-1^1 (sinx+x^2)/(3-|x|)dx= (A) 0 (B) 2int_0^1 sinx/(3-|x|)dx (C) 2int_0^1 x^2/(3-|x|)dx (D) 2int_0^1 (sinx+x^2)/(3-|x|)dx

int_-1^1 (sinx+x^2)/(3-|x|)dx= (A) 0 (B) 2int_0^1 sinx/(3-|x|)dx (C) 2int_0^1 x^2/(3-|x|)dx (D) 2int_0^1 (sinx+x^2)/(3-|x|)dx

The value of int_(1)^(2)e^(x) [(1)/(x)-(1)/(x^(2))] dx is equal to