Home
Class 12
MATHS
दो सरल रेखाओं के दिक् अनुपात l(1),m(1),...

दो सरल रेखाओं के दिक् अनुपात `l_(1),m_(1),n_(1)` और `l_(2),m_(2),n_(2)` हैं । दोनों सरल रेखाएं परस्पर लंब होगी यदि

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

Two lines with direction cosines l_(1),m_(1),n_(1) and l_(2), m_(2), n_(2) are at right angle of

STATEMENT-1 : If a line making an angle pi//4 with x-axis, pi//4 with y-axis then it must be perpendicular to z-axis and STATEMENT-2 : If direction ratios of two lines are l_(1), m_(1), n_(1) and l_(2), m_(2), n_(2) then the angle between them is given by theta = cos ^(-1)(l_(1)l_(2)+m_(2)m_(2)+n_(1)n_(2))

STATEMENT-1 : If a line making an angle pi//4 with x-axis, pi//4 with y-axis then it must be perpendicular to z-axis and STATEMENT-2 : If direction ratios of two lines are l_(1), m_(1), n_(1) and l_(2), m_(2), n_(2) then the angle between them is given by theta = cos ^(-1)(l_(1)l_(2)+m_(2)m_(2)+n_(1)n_(2))

If the direction cosines of two lines are l_(1), m_(1), n_(1) and l_(2), m_(2), n_(2) , then find the direction cosine of a line perpendicular to these lines. a) l_(1)+l_(2),m_(1)+m_(2),n_(1)+n_(2) b) l_(1)-l_(2),m_(1)-m_(2),n_(1)-n_(2) c) m_(1)n_(2)-m_(2)n_(1),n_(1)l_(2)-n_(2)l_(1),l_(1)m_(2)-l_(2)m_(1) d) l_(1)+2l_(2),m_(1)+2m_(2),n_(1)+2n_(2)

The direction Cosines of two lines at right angles are l_(1),m_(1),n_(1)and l_(2),m_(2),n_(2) Then the direction cosines of a line which is perpendicular to both these lines are

If the direction cosines of two lines are (l_(1), m_(1), n_(1)) and (l_(2), m_(2), n_(2)) and the angle between them is theta then l_(1)^(2)+m_(1)^(2)+n_(1)^(2)=1=l_(2)^(2)+m_(2)^(2)+n_(2)^(2) and costheta = l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2) If the angle between the lines is 60^(@) then the value of l_(1)(l_(1)+l_(2))+m_(1)(m_(1)+m_(2))+n_(1)(n_(1)+n_(2)) is

If the direction cosines of two lines are (l_(1), m_(1), n_(1)) and (l_(2), m_(2), n_(2)) and the angle between them is theta then l_(1)^(2)+m_(1)^(2)+n_(1)^(2)=1=l_(2)^(2)+m_(2)^(2)+n_(2)^(2) and costheta = l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2) If the angle between the lines is 60^(@) then the value of l_(1)(l_(1)+l_(2))+m_(1)(m_(1)+m_(2))+n_(1)(n_(1)+n_(2)) is