Home
Class 12
MATHS
underset(n to oo)lim (n(1^(3)+2^(3)+...+...

`underset(n to oo)lim (n(1^(3)+2^(3)+...+n^(3))^(2))/((1^(2)+2^(2)+...+n^(2))^(3))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim (1^(3)+2^(3)+3^(3)+...+n^(3))/(n^(4))=

underset(n to oo)lim (1^(2)+2^(2)+3^(2)+...+n^(2))/(n^(3))=

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

lim_(n rarr oo)(n^(2)(1^(3)+2^(3)+...+n^(3)))/((1^(2)+2^(2)+......+n^(2))^(2))

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

underset(n to oo)lim (1+3+3^(2)+...3^(n))/(1+2+2^(2)+...+2^(n))=

lim_(n rarr oo)(n^(2)(1^(3)+2^(3)+......+n^(3)))/((1^(2)+2^(2)+......+n^(2))^(2))

underset(n to oo)lim (1+3+6+...+n(n+1)//2)/(n^(3))=

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

underset(n to oo)lim {1/2+1/2^(2)+1/2^(3)+...+1/2^(n)}=