Home
Class 12
MATHS
If cos(alpha-beta) and cos(alpha+beta) a...

If `cos(alpha-beta)` and `cos(alpha+beta)` are the length of segments of a focal chord of parabola `y^2=2(cosalpha)x` divided at x-axis, then `cosalphasec(beta/2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(alpha-beta) and cos(alpha+beta) are the length of segments of a focal chord of parabola y^(2)=2(cos alpha)x divided at parabola cos alpha sec((beta)/(2)) is equal to

If cosalpha=1/2(x+1/x) cosbeta=1/2(y+1/y) then cos(alpha-beta) is equal to

cos^(2)(alpha+beta)+cos^(2)(alpha-beta)-cos2alpha cos2beta=

If alpha and beta are the eccentric angles of the ends of a focal chord of the ellipse then cos^(2)((alpha+beta)/(2))sec^(2)((alpha-beta)/(2)) =

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

If cos alpha+cos beta=0=sin alpha+sin beta , then cos 2 alpha+cos 2beta is equal to

If cos alpha + cos beta =0 = sin alpha + sin beta , then cos 2 alpha + cos 2 beta is equal to

If sin alpha+sin beta=a and cos alpha+cos beta=b then tan((alpha-beta)/(2)) is equal to

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=