Home
Class 12
MATHS
Prove the equation sqrt((x + 4)^(2) + (y...

Prove the equation `sqrt((x + 4)^(2) + (y + 2)^(2)) - sqrt((x-4)^(2) + (y - 2)^(2)) = 8` represents a hyperbola.

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation | sqrt( (x- 2) ^(2) + (y-1) ^(2)) - sqrt( (x+ 2)^(2) +y^(2)) =c will represent a hyperbola if

If the equation |sqrt((x - 1)^(2) + y^(2) ) - sqrt((x + 1)^(2) + y^(2))| = k represents a hyperbola , then k belongs to the set

If the equation |sqrt((x - 1)^(2) + y^(2) ) - sqrt((x + 1)^(2) + y^(2))| = k represents a hyperbola , then k belongs to the set

Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))-sqrt((x-5)^(2)+(y-5)^(2))=4 which represents a hyperbola. Q. Locus of point of intersection of two perpendicular tangents to the hyperbola is

Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))-sqrt((x-5)^(2)+(y-5)^(2))=4 which represents a hyperbola. Q. Locus of point of intersection of two perpendicular tangents to the hyperbola is

Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))-sqrt((x-5)^(2)+(y-5)^(2))=4 which represents a hyperbola. Q. Locus of point of intersection of two perpendicular tangents to the hyperbola is

The equation |sqrt(x^(2)+(y-1)^(2))-sqrt(x^(2) +(y+1)^(2))| = k will represent a hyperbola for-

The equation sqrt([(x-2)^(2)+y^(2)])+ sqrt([(x+2)^(2)+y^(2)])=4

The equation sqrt((x-4)^(2)+y^(2))+sqrt((x+4)^(2)+y^(2))=6 represents