Home
Class 11
MATHS
" If "A=[[-4,-1],[3,1]]" then the determ...

" If "A=[[-4,-1],[3,1]]" then the determinant of the matrix "(A^(200)-2A^(2x)-A^(x omega))" is: "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= [{:(1,3),(2,1):}] ,find the determinant of the matrix A^2-2A .

If A=[1 3 2 1] , find the determinant of the matrix A^2-2A .

If A=[1 3 2 1] , find the determinant of the matrix A^2-2Adot

Consider a matrix A=[[1,1,1],[0,0,1],[2,3,4]] . The value of determinant of (A^(-1)-(A^(-1))^(2)) is

Consider a matrix A=[[1,1,1],[0,0,1],[2,3,4]] .The value of determinant of (A^(-1)-(A^(-1))^(2)) is

Consider a matrix A= [[1,1,1],[0,0,1],[2,3,4]] .The value of determinant of (A^(-1)-(A^(-1))^(2)) is

" If the trace of the matrix: "A=[[-1,0,2,5],[3,x^(2)-2,4,1],[-1,-2,x-3,1],[2,0,4,x^(2)-6]]" is "0" then "x" is equal to "

If [[2+x,3,4],[1,-1,2],[x,1,-5]] is singular matrix then x is

If the adjoint of a 3x3 matrix P is (1 4 4) (2 1 7) (1 1 3) , then the possible value(s) of the determinant of P is (are) (A) -2 (B) -1 (C) 1 (D) 2

If the adjoint of a 3x3 matrix P is [(1,4,4),(2,1,7),(1,1,3)] , then the possible value/s of the determinant of P is/are (A) +-2 (B) +-1 (C) +-4 (D) +-3