Home
Class 12
MATHS
[" Let "P" and "Q" be "3times3" matrices...

[" Let "P" and "Q" be "3times3" matrices such that "boldsymbol P!=boldsymbol Q],[" .If "boldsymbol P^(3)=boldsymbol Q^(3)" and "boldsymbol P^(boldsymbol2)boldsymbol Q=boldsymbol Q^(boldsymbol2)boldsymbol P," then "boldsymbol d_(boldsymbol i boldsymbol t)(boldsymbol P^(2)+boldsymbol Q^(2))],[" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve | boldsymbol x|=x^(2)-1

(p-q)^(3)-(p+q)^(3) is equal to

Let P and Q be 3xx3 matrices with P!=Q . If P^(3)=Q^(3) and P^(2)Q=Q^(2)P , then determinant of (P^(2)+Q^(2)) is equal to

Let P and Q be 3 xx3 matrices with P != Q . If P^(3) = Q^(3) and P^(2) Q = P^(2)Q = Q^(2) P , then determinant of (P^(2) + Q^(2)) is equal to :

If 3p^(2)=5p+2 and 3q^(2)=5q+2 where p!=q,pq is equal to

Let P and Q be 3xx3 matrices with P!=Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P, then determinant of (P^(2)+Q^(2)) is equal to (1)2(2)1(3)0(4)1

Let P and Q be 3xx3 matrices P ne Q . If P^(3)=Q^(3) and P^(2)Q=Q^(2)P , then determinant of (P^(2)+Q^(2)) is equal to :

Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a nd""P^2Q""=""Q^2P , then determinant of (P^2+""Q^2) is equal to (1) 2(2) 1 (3)0 (4) 1