Home
Class 12
MATHS
" Prove that "3(sin theta-cos theta)^(t)...

" Prove that "3(sin theta-cos theta)^(t)+6(sin theta+cos theta)^(2)+4(sin^(6)theta+cos^(4)theta)=13

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4(sin^(6)theta+cos^(6)theta)-13=0

3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4(sin^(6)theta+cos^(6)theta) is equal to 11(b)12(c)13(d)14

Prove that: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) = 1-sin theta cos theta

If (sin theta+cos theta)/(sin theta-cos theta)=3 then sin^4 theta-cos^4 theta=

Prove that 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

Show that (Sin theta + Cos theta)^2 - (Sin theta - Cos theta)^2 = 4 Sin theta Cos theta