Home
Class 14
MATHS
" 5."p(x)=3x^(4)-6x^(2)-8x-2,g(x)=x-2...

" 5."p(x)=3x^(4)-6x^(2)-8x-2,g(x)=x-2

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=3x^(4)-6x^(2)+8x-2,g(x)=x-2 .

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=x^(3)-6x^(2)+2x-4,g(x)=1-(3)/(2)x .

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(4)+x^(3)-8x^(2)-x+6,g(x)=2x-3

Find the quotient and remainder on dividing p(x) by g(x) in each of the following cases, without actual division : p(x)= x^(3)+4x^(2)-6x+2, g(x)= x-3

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(4)+9x^(3)+6x^(2)-11x-6,g(x)=x-1

If p(x)=8x^(3)-6x^(2)-4x+3 and g(x) = (x)/(3)-(1)/(4) then check whether g (x) is a factor of p(x) or not.

Find the quotient and remainder on dividing p(x) by g(x) p(x)= 4x^(3)+8x^(2)+8x+7, g(x)= 2x^(2)-x+1