Home
Class 12
MATHS
Sum of the series S=sum(j=0)^(8)1/((j+...

Sum of the series
`S=sum_(j=0)^(8)1/((j+1)(j+2))(""^(8)C_(j))` is

A

`1003/90`

B

`1013/90`

C

`1023/90`

D

`1033/90`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{j=0}^{8} \frac{1}{(j+1)(j+2)} \binom{8}{j} \] ### Step 1: Rewrite the term \(\frac{1}{(j+1)(j+2)}\) We can rewrite \(\frac{1}{(j+1)(j+2)}\) using partial fractions: \[ \frac{1}{(j+1)(j+2)} = \frac{1}{j+1} - \frac{1}{j+2} \] ### Step 2: Substitute the partial fraction into the sum Now, substitute this back into the sum: \[ S = \sum_{j=0}^{8} \left( \frac{1}{j+1} - \frac{1}{j+2} \right) \binom{8}{j} \] ### Step 3: Split the summation This gives us two separate sums: \[ S = \sum_{j=0}^{8} \frac{1}{j+1} \binom{8}{j} - \sum_{j=0}^{8} \frac{1}{j+2} \binom{8}{j} \] ### Step 4: Simplify the first sum The first sum can be simplified using the identity: \[ \sum_{j=0}^{n} \frac{1}{j+1} \binom{n}{j} = \frac{1}{n+1} \sum_{j=0}^{n} \binom{n+1}{j+1} = \frac{2^n}{n+1} \] For \(n=8\): \[ \sum_{j=0}^{8} \frac{1}{j+1} \binom{8}{j} = \frac{2^8}{9} = \frac{256}{9} \] ### Step 5: Simplify the second sum The second sum can be simplified similarly: \[ \sum_{j=0}^{8} \frac{1}{j+2} \binom{8}{j} = \frac{1}{10} \sum_{j=0}^{8} \binom{9}{j+2} = \frac{1}{10} \cdot 2^9 = \frac{512}{10} = \frac{256}{5} \] ### Step 6: Combine the results Now, substitute these results back into the expression for \(S\): \[ S = \frac{256}{9} - \frac{256}{5} \] ### Step 7: Find a common denominator and simplify The common denominator of 9 and 5 is 45: \[ S = \frac{256 \cdot 5}{45} - \frac{256 \cdot 9}{45} = \frac{1280 - 2304}{45} = \frac{-1024}{45} \] ### Step 8: Final Result Thus, the final value of the sum \(S\) is: \[ S = \frac{-1024}{45} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 1 Single Correct Answer Type Questions)|80 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 Single Correct Answer Type Questions)|23 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Paper|12 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos

Similar Questions

Explore conceptually related problems

sum_(j=1)^(n)sum_(i=1)^(n)i=

So, statement-1 is also true. Stetement-2 is a correct expanation for statement-1. S_(1)= sum_(j=1)^(10) j (j -1)""^(10)C_(j),S_(2)= sum_(j=1)^(10)j.""^(10)C_(j) and S_(2)= sum_(j=1)^(10)j.""^(10)C_(j) . Statement-1 S_(3) = 50xx2^(9) . Statement-2 S_(1) = 90xx2^(8) and S_(2) = 10 xx 2^(8)

S=sum_(i=1)^(n)sum_(j=1)^(i)sum_(k=1)^(j)1

Find the sum sum_(j=0)^(11)sum_(i=j)^(11)([ij])

Find the sum sum_(j=0)^n(^(4n+1)C_j+^(4n+1)C_(2n-j)) .

Evaluate sum_(i=0)^(n)sum_(j=0)^(n) ""^(n)C_(j) *""^(j)C_(i), ile j .

The value of the expression sum sum_(0<=i<=j<=n) (-1)^(i-j+1) C(n,i) C(n,j)