Home
Class 12
MATHS
If n in N, n > 1, then value of E= a - "...

If `n in N, n > 1`, then value of `E= a - ""^(n)C_(1) (a-1) + ""^(n)C_(2) (a -2)+ ... + (- 1)^(n) (a-n) (""^(n)C_(n))` is

A

a

B

0

C

`a^(2)`

D

`2^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ E = a - \binom{n}{1}(a-1) + \binom{n}{2}(a-2) - \ldots + (-1)^n (a-n) \binom{n}{n} \] ### Step 1: Rewrite the Expression We can rewrite the expression \(E\) using summation notation: \[ E = \sum_{r=0}^{n} (-1)^r (a - r) \binom{n}{r} \] ### Step 2: Split the Summation We can split the summation into two parts: \[ E = \sum_{r=0}^{n} (-1)^r a \binom{n}{r} - \sum_{r=0}^{n} (-1)^r r \binom{n}{r} \] ### Step 3: Evaluate the First Summation The first summation can be simplified: \[ \sum_{r=0}^{n} (-1)^r a \binom{n}{r} = a \sum_{r=0}^{n} (-1)^r \binom{n}{r} = a(1 - 1)^n = a \cdot 0 = 0 \] ### Step 4: Evaluate the Second Summation For the second summation, we can use the identity \(r \binom{n}{r} = n \binom{n-1}{r-1}\): \[ \sum_{r=0}^{n} (-1)^r r \binom{n}{r} = n \sum_{r=1}^{n} (-1)^r \binom{n-1}{r-1} = n \sum_{s=0}^{n-1} (-1)^{s+1} \binom{n-1}{s} \] This can be simplified further: \[ = -n \sum_{s=0}^{n-1} (-1)^s \binom{n-1}{s} = -n(1 - 1)^{n-1} = -n \cdot 0 = 0 \] ### Step 5: Combine the Results Now, substituting back into our expression for \(E\): \[ E = 0 - 0 = 0 \] ### Conclusion Thus, the value of \(E\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 Single Correct Answer Type Questions)|23 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( Numerical Answer Type Questions)|20 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( Concept Based Single Correct Answer Type Questions)|10 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Paper|12 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos

Similar Questions

Explore conceptually related problems

The value of sum (""^(n) C_(1) )^(2)+ (""^(n) C_(2) )^(2) + (""^(n) C_(3))^(2) + …+ (""^(n) C_(n) )^(2) is

If n is ann integer greater than 1, then a-^(n)C_(1)(a-1)+.^(n)C_(2)(a-2)- . . .+(-1)^(n)(a-n)=

The sum of the series 1+(1)/(2) ""^(n) C_1 + (1)/(3) ""^(n) C_(2) + ….+ (1)/(n+1) ""^(n) C_(n) is equal to

What is ""^(n)C_(1)+ ""^(n)C_(2)+……… + ""^(n)C_(n) ?

If n is a positvie integers, the value of E=(2n+1).^(n)C_(0)+(2n-1).^(n)C_(1)+(2n-3)^(n)C_(2)+………+1. ^(n)C_(n)2 is

MCGROW HILL PUBLICATION-MATHEMATICAL INDUCTION AND BINOMIAL THEOREM-SOLVED EXAMPLES ( LEVEL 1 Single Correct Answer Type Questions)
  1. If (1+ x)^(n) = C(0) + C(1) x + C(2)x^(2) + ...+ C(n)x^(n) , prove tha...

    Text Solution

    |

  2. (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + C(3) x^(3) + … + C(n) x^(n)...

    Text Solution

    |

  3. If n in N, n > 1, then value of E= a - ""^(n)C(1) (a-1) + ""^(n)C(2) (...

    Text Solution

    |

  4. Suppose ABC is a triangle and n is a natural number, then sum of the s...

    Text Solution

    |

  5. Find the positive integer just greater than (1+0. 0001)^(10000)dot

    Text Solution

    |

  6. The coefficient of the middle term in the binomial expansion in powers...

    Text Solution

    |

  7. For natural numbers m, n if (1-y)^(m)(1+y)^(n) = 1+a(1)y+a(2)y^(2) + "...

    Text Solution

    |

  8. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |

  9. The sum of the coefficients of all odd degree terms in the expansion o...

    Text Solution

    |

  10. The coefficient of x^r[0lt=rlt=(n-1)] in lthe expansion of (x+3)^(n-1)...

    Text Solution

    |

  11. Number of zeroes at the end of 99^(1001)+1?

    Text Solution

    |

  12. The co-efficient of x^k (0 <= k <= n) in the expansion of E= 1+(1+x) +...

    Text Solution

    |

  13. Find the number of irrational terms in the expansion of (5^(1//6)+2^(1...

    Text Solution

    |

  14. The sum of the rational terms in the expansion of (2^(1//5) + sqrt(...

    Text Solution

    |

  15. In the expansion of (x^3-1/x^2)^n, n in N if sum of the coefficients o...

    Text Solution

    |

  16. If in the expansion of (1 + ax)^(n),n in N, the coefficient of x an...

    Text Solution

    |

  17. The greatest value of the term independent of x, as alpha varies over ...

    Text Solution

    |

  18. Sum of the last 20 coefficients in the expansion of (1 + x)^(39), when...

    Text Solution

    |

  19. If (1+x)^(15)=C0+C1x+C2x^2++C(15)x^(15), then find the su of C1+2C3+3C...

    Text Solution

    |

  20. Let R=(2+sqrt(3))^(2n) and f=R-[R] where [ ] denotes the greatest in...

    Text Solution

    |