Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1) x + C(2) x^...

If `(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ... + C_(n) x^(n)`, then value of `C_(0)^(2) + 2C_(1)^(2) + 3C_(2)^(2) + ... + (n + 1) C^(2)n` is

A

`(2n+1)(""^(2n)C_(n))`

B

`(2n-1)(""^(2n)C_(n))`

C

`(n/2+1)(""^(2n)C_(n))`

D

`(1+n/2)(""^(2n-1)C_(n))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( C_0^2 + 2C_1^2 + 3C_2^2 + \ldots + (n+1)C_n^2 \), we will use the properties of binomial coefficients and some algebraic manipulation. ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficients**: The binomial expansion of \( (1 + x)^n \) is given by: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] where \( C_k = \binom{n}{k} \) for \( k = 0, 1, 2, \ldots, n \). 2. **Setting Up the Summation**: We need to evaluate: \[ S = C_0^2 + 2C_1^2 + 3C_2^2 + \ldots + (n+1)C_n^2 \] This can be rewritten using summation notation: \[ S = \sum_{k=0}^{n} (k+1) C_k^2 \] 3. **Using the Identity for Binomial Coefficients**: We can use the identity: \[ \sum_{k=0}^{n} k C_k^2 = n C_n \] This gives us a way to separate the summation into two parts: \[ S = \sum_{k=0}^{n} C_k^2 + \sum_{k=0}^{n} k C_k^2 \] 4. **Calculating \( \sum_{k=0}^{n} C_k^2 \)**: There is a known result that states: \[ \sum_{k=0}^{n} C_k^2 = C_{2n}^n \] 5. **Calculating \( \sum_{k=0}^{n} k C_k^2 \)**: Using the identity mentioned earlier: \[ \sum_{k=0}^{n} k C_k^2 = n C_n \] 6. **Combining the Results**: Now substituting back into our expression for \( S \): \[ S = C_{2n}^n + n C_n \] 7. **Final Expression**: Thus, the value of \( C_0^2 + 2C_1^2 + 3C_2^2 + \ldots + (n+1)C_n^2 \) is: \[ S = C_{2n}^n + n C_n \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( Numerical Answer Type Questions)|20 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based Single Correct Answer Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 1 Single Correct Answer Type Questions)|80 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Paper|12 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1+x)^(n)=C_(o)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then the value of 1^(2)C_(1)+2^(2)C_(2)+3^(2)C_(3)+...

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then the value of (C_(0))^(2)+((C_(1))^(2))/(2)+((C_(2))^(2))/(3)+...+((C_(n))^(2))/(n+1) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

MCGROW HILL PUBLICATION-MATHEMATICAL INDUCTION AND BINOMIAL THEOREM-SOLVED EXAMPLES ( LEVEL 2 Single Correct Answer Type Questions)
  1. E=(3^(log(3)sqrt(9^(|x-2|)))+7^((1/5)log(7)(4).3^(|x-2|)-9 ))^(7)

    Text Solution

    |

  2. Let a(n) denote the term independent of x in the expansion of [x+(sin(...

    Text Solution

    |

  3. Find the largest term in the expansion of (3+2x)^(50),w h e r ex=1//5.

    Text Solution

    |

  4. If n is odd, then sum of the series C(0)^(2)-C(1)^(2)+C(2)^(2)-C(2)^(3...

    Text Solution

    |

  5. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + …+ C(n) x^(n) , prove t...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + ... + C(n) x^(n), then v...

    Text Solution

    |

  7. If C(r) stands for ""^(n)C(r), then the sum of the series (2((n)/(2))!...

    Text Solution

    |

  8. The sum of coefficients of integral powers of x in the binomial exp...

    Text Solution

    |

  9. Given that the 4th term in the expansion of [2+(3//8x)]^(10) has the m...

    Text Solution

    |

  10. Assuming x to be so small that x^(3) and higher powers of x can be neg...

    Text Solution

    |

  11. If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+…a(16)x^(16) for all values of...

    Text Solution

    |

  12. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  13. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  14. Sum of the series sum(k=0)^(n)""^(n)C(k)(-1)^(k)1/(a(k)) where a(k...

    Text Solution

    |

  15. Suppose m and n are positive integers and let S=sum(k=0)^n (-1)^k 1/(...

    Text Solution

    |

  16. Coefficient of x^(m) in the expansion of S = (1 + x)^(2m) + x(1 +·x)...

    Text Solution

    |

  17. Sum of the first 20 terms of the series 1/((2)(4))+((1)(3))/((2)(4)(...

    Text Solution

    |

  18. The term independent of x in the expansion of (1-1/(2x)+3x^(7))(x^(2...

    Text Solution

    |

  19. Let P(x) be a polynomial with real coefficients such that int(0)^(1)x^...

    Text Solution

    |

  20. Suppose [x] denote the greatest integer lex and ninN, then lim(nto o...

    Text Solution

    |