Home
Class 12
MATHS
Assuming x to be so small that x^(3) and...

Assuming x to be so small that `x^(3)` and higher powers of x can be neglected, then value of
`E=(1-3/2x)^(5)(2+3x)^(6)`, is

A

64 + 96x + 720`x^(2)`

B

65 - 97x + 721`x^(2)`

C

64- 96x + 720`x^(2)`

D

64 + 96x - 720`x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( E = \left(1 - \frac{3}{2}x\right)^{5} \left(2 + 3x\right)^{6} \) while neglecting \( x^3 \) and higher powers, we can use the binomial theorem to expand both terms. ### Step-by-Step Solution: 1. **Expand \( \left(1 - \frac{3}{2}x\right)^{5} \)**: Using the binomial theorem: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] Here, \( x = 1 \), \( y = -\frac{3}{2}x \), and \( n = 5 \). \[ \left(1 - \frac{3}{2}x\right)^{5} = \binom{5}{0}(1)^{5}\left(-\frac{3}{2}x\right)^{0} + \binom{5}{1}(1)^{4}\left(-\frac{3}{2}x\right)^{1} + \binom{5}{2}(1)^{3}\left(-\frac{3}{2}x\right)^{2} \] Neglecting higher powers: \[ = 1 - \frac{15}{2}x + \frac{45}{4}x^2 \] 2. **Expand \( \left(2 + 3x\right)^{6} \)**: Again using the binomial theorem: \[ \left(2 + 3x\right)^{6} = \binom{6}{0}(2)^{6}(3x)^{0} + \binom{6}{1}(2)^{5}(3x)^{1} + \binom{6}{2}(2)^{4}(3x)^{2} \] Neglecting higher powers: \[ = 64 + 6 \cdot 32 \cdot 3x + 15 \cdot 16 \cdot 9x^2 \] \[ = 64 + 576x + 2160x^2 \] 3. **Combine the expansions**: Now, we multiply the two expansions: \[ E = \left(1 - \frac{15}{2}x + \frac{45}{4}x^2\right) \left(64 + 576x + 2160x^2\right) \] We will calculate the constant term, the coefficient of \( x \), and the coefficient of \( x^2 \). - **Constant term**: \[ 1 \cdot 64 = 64 \] - **Coefficient of \( x \)**: \[ -\frac{15}{2} \cdot 64 + 576 = -480 + 576 = 96 \] - **Coefficient of \( x^2 \)**: \[ \frac{45}{4} \cdot 64 + \left(-\frac{15}{2} \cdot 576\right) + 2160 \] \[ = 720 - 4320 + 2160 = 720 - 2160 = -1440 \] 4. **Final expression**: Combining all the terms, we get: \[ E = 64 + 96x - 1440x^2 \] ### Final Result: Thus, the value of \( E \) is: \[ E = 64 + 96x - 1440x^2 \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( Numerical Answer Type Questions)|20 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based Single Correct Answer Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 1 Single Correct Answer Type Questions)|80 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Paper|12 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos

Similar Questions

Explore conceptually related problems

Assuming x to be so small that x^(2) and higher power of x can be neglected,prove that ((1+(3x)/(4))^(-4)(16-3x)^((1)/(2)))/((8+x)^((2)/(3)))=1-((305)/(96))x

Assuming 'x' to be small that x^(2) and higher power of x' can be neglected,show that,(1+(3)/(4)(x))^(-4)(16-3x)^((1)/(2))(8+x)^(2) appoximately equat to,1-(305)/(96)x

If |x| is so small that x^(2) and higher power of x may be neglected then the approximate value of ((4+x)^((1)/(2))+(8-x)^((1)/(3)))/((1-(2x)/(3))^((3)/(2))) when x=(6)/(25) is

If x is small so that x^(2) and higher powers can be neglected,then the approximate value for ((1-2x)^(-1)(1-3x)^(-2))/((1-4x)^(-3)) is

If x is so small that x^(3) and higher powers of x may be neglected, then ((1+x)^(3//2)-(1+1/2 x)^3)/((1-x)^(1//2)) may be approximated as

If x is so small that x^(3) and higher powers of x may be neglectd,then ((1+x)^(3/2)-(1+(1)/(2)x)^(3))/((1-x)^(1/2)) may be approximated as 3x+(3)/(8)x^(2) b.1-(3)/(8)x^(2) c.(x)/(2)-(3)/(x)x^(2) d.-(3)/(8)x^(2)

MCGROW HILL PUBLICATION-MATHEMATICAL INDUCTION AND BINOMIAL THEOREM-SOLVED EXAMPLES ( LEVEL 2 Single Correct Answer Type Questions)
  1. E=(3^(log(3)sqrt(9^(|x-2|)))+7^((1/5)log(7)(4).3^(|x-2|)-9 ))^(7)

    Text Solution

    |

  2. Let a(n) denote the term independent of x in the expansion of [x+(sin(...

    Text Solution

    |

  3. Find the largest term in the expansion of (3+2x)^(50),w h e r ex=1//5.

    Text Solution

    |

  4. If n is odd, then sum of the series C(0)^(2)-C(1)^(2)+C(2)^(2)-C(2)^(3...

    Text Solution

    |

  5. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + …+ C(n) x^(n) , prove t...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + ... + C(n) x^(n), then v...

    Text Solution

    |

  7. If C(r) stands for ""^(n)C(r), then the sum of the series (2((n)/(2))!...

    Text Solution

    |

  8. The sum of coefficients of integral powers of x in the binomial exp...

    Text Solution

    |

  9. Given that the 4th term in the expansion of [2+(3//8x)]^(10) has the m...

    Text Solution

    |

  10. Assuming x to be so small that x^(3) and higher powers of x can be neg...

    Text Solution

    |

  11. If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+…a(16)x^(16) for all values of...

    Text Solution

    |

  12. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  13. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  14. Sum of the series sum(k=0)^(n)""^(n)C(k)(-1)^(k)1/(a(k)) where a(k...

    Text Solution

    |

  15. Suppose m and n are positive integers and let S=sum(k=0)^n (-1)^k 1/(...

    Text Solution

    |

  16. Coefficient of x^(m) in the expansion of S = (1 + x)^(2m) + x(1 +·x)...

    Text Solution

    |

  17. Sum of the first 20 terms of the series 1/((2)(4))+((1)(3))/((2)(4)(...

    Text Solution

    |

  18. The term independent of x in the expansion of (1-1/(2x)+3x^(7))(x^(2...

    Text Solution

    |

  19. Let P(x) be a polynomial with real coefficients such that int(0)^(1)x^...

    Text Solution

    |

  20. Suppose [x] denote the greatest integer lex and ninN, then lim(nto o...

    Text Solution

    |