Home
Class 12
MATHS
C(0)^(2)+1/2C(1)^(2)+1/3C(2)^(2)+….+1/(n...

`C_(0)^(2)+1/2C_(1)^(2)+1/3C_(2)^(2)+….+1/(n+1)C_(n)^(2)` equals

A

`1/n(""^(2n)C_(n))`

B

`1/(n+1)(""^(2n+1)C_(n))`

C

`1/n(""^(2n)C_(n+1))`

D

`2^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( C_0^2 + \frac{1}{2} C_1^2 + \frac{1}{3} C_2^2 + \ldots + \frac{1}{n+1} C_n^2 \), we will use properties of binomial coefficients and summation techniques. Here’s the step-by-step solution: ### Step 1: Understand the terms involved The term \( C_r^2 \) refers to the binomial coefficient, which can be expressed as \( C_r^2 = \binom{n}{r}^2 \). ### Step 2: Rewrite the expression We can rewrite the given expression as: \[ \sum_{r=0}^{n} \frac{1}{r+1} C_r^2 \] where \( C_r = \binom{n}{r} \). ### Step 3: Use the identity for binomial coefficients There is a known identity that states: \[ \sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n} \] This identity will help us relate the squared binomial coefficients to a single binomial coefficient. ### Step 4: Apply the identity to our sum Using the identity, we can express our sum as: \[ \sum_{r=0}^{n} \frac{1}{r+1} C_r^2 = \frac{1}{n+1} \sum_{r=0}^{n} C_r^2 \] Thus, we have: \[ \sum_{r=0}^{n} \frac{1}{r+1} C_r^2 = \frac{1}{n+1} \binom{2n}{n} \] ### Step 5: Final expression Therefore, the final expression for the original sum is: \[ C_0^2 + \frac{1}{2} C_1^2 + \frac{1}{3} C_2^2 + \ldots + \frac{1}{n+1} C_n^2 = \frac{1}{n+1} \binom{2n}{n} \] ### Conclusion The result is: \[ \frac{1}{n+1} \binom{2n}{n} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|20 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|59 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 Single Correct Answer Type Questions)|55 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Paper|12 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ... + C_(n) x^(n) , then value of C_(0)^(2) + 2C_(1)^(2) + 3C_(2)^(2) + ... + (n + 1) C^(2)n is

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then for n odd ,C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+...+(-1)C_(n)^(2), is equal to

The value of hat r(2n+1)C_(0)^(2)+^(2n+1)C_(1)^(2)+^(2n+1)C_(2)^(2)+....+^(2n+1)C_(n)^(2) is equal to

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .