Home
Class 12
MATHS
The sum of the coefficients of the first...

The sum of the coefficients of the first three terms in the expansion of`(x-3/(x^2))^m ,x!=0,`m being a natural number, is 559. Find the term of the expansion containing `x^3`.

Text Solution

Verified by Experts

The correct Answer is:
66
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|59 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 Single Correct Answer Type Questions)|10 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Paper|12 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos

Similar Questions

Explore conceptually related problems

The sum of the coefficients of first three term in the expansion of (x-3/(x^2))^m\, x!=0. m being a natural number, is 559. Find the term of the expansion containing x^3 .

The sum of the coefficients of the first 10 terms in the expansion of (1-x)^(-3) is

The sum of the coefficients of middle terms in the expansion of (1+x)^(2n-1)

What is the sum of the coefficients of all the terms in the expansion of (45x-49)^(4) ?

What is the sum of the coefficients of first and last terms in the expansion of (1 + x)^(2n) , where n is a natural number?

Find the middle term in the expansion of (3x-(x^3)/6)^9

Find the 9 th term in the expansion of ((x)/(a)-(3a)/(x^(2)))^(12)

Write the coefficient of the middle term in the expansion of {(x+y^(3))^(3)}^(7)

MCGROW HILL PUBLICATION-MATHEMATICAL INDUCTION AND BINOMIAL THEOREM-EXERCISE (Numerical Answer Type Questions)
  1. If the coefficient of x^(2) and x^(3) in the expansion of (3+ax)^(11) ...

    Text Solution

    |

  2. If sum(r=0)^(n)(3^(r))(""^(n)C(r))=4096, then n=-

    Text Solution

    |

  3. Coefficient of x^(7) in the expansion of (1+x+x^(2))^(4) is

    Text Solution

    |

  4. The value of (18^3 +7^3+3.187.25)/(3^6+62432+1581.4+2027.8+159.16+ 6....

    Text Solution

    |

  5. If the sixth term in the expansion of [3log(3sqrt(9^(x-1)+7))+1/(3^(...

    Text Solution

    |

  6. In the expansion of (2-3x^3)^(20), if the ratio of 10^(th) term to 11^...

    Text Solution

    |

  7. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  8. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  9. The sum of the coefficients of the first three terms in the expansion...

    Text Solution

    |

  10. The value of ((""^(50)C(0))/(1)+(""^(50)C(2))/(3)+(""^(50)C(4))/(5)+…....

    Text Solution

    |

  11. If n >2, then prove that C1(a-1)-C2xx(a-2)++(-1)^(n-1)Cn(a-n)=a ,w h e...

    Text Solution

    |

  12. Suppose the sum of the coefficients in the expansion of (1 - 5x + 12x^...

    Text Solution

    |

  13. Let C(r)=""^(15)C(r),(0lerle15), and m=(C(1))/(C(0))+(2C(3))/(C(2))+(3...

    Text Solution

    |

  14. Suppose the coefficient of the middle term in the expansion of (1 + x)...

    Text Solution

    |

  15. If n is an even natural number , then sum(r=0)^(n) (( -1)^(r))/(""^(n)...

    Text Solution

    |

  16. If a > 0 and the coefficient of x^(5) in the expansion of (1+ax)^(2)(1...

    Text Solution

    |

  17. Coefficient of x^(11) in the expaJ}sion of (1 + 3x + 2x^(2))^(6) is

    Text Solution

    |

  18. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  19. If a:b = 3:5, and sum of the coefficients of 5^(th) and 6^(th) terms i...

    Text Solution

    |

  20. For n = 6, let N=(""^(n)C(0))^(2)+(""^(n)C(1))^(2)+…+(""^(n)C(n))^(2...

    Text Solution

    |