Home
Class 12
MATHS
Let I=int(0)^(2pi)(xsin^(8)x)/(sin^(8)x+...

Let `I=int_(0)^(2pi)(xsin^(8)x)/(sin^(8)x+cos^(8)x)dx`, then I is equal to :

A

`2pi`

B

`4pi`

C

`2pi^(2)`

D

`pi^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} \frac{x \sin^8 x}{\sin^8 x + \cos^8 x} \, dx \), we can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In this case, \( a = 0 \) and \( b = 2\pi \), so we can rewrite the integral as follows: 1. **Step 1: Apply the property of definite integrals.** \[ I = \int_{0}^{2\pi} \frac{x \sin^8 x}{\sin^8 x + \cos^8 x} \, dx = \int_{0}^{2\pi} \frac{(2\pi - x) \sin^8(2\pi - x)}{\sin^8(2\pi - x) + \cos^8(2\pi - x)} \, dx \] Since \( \sin(2\pi - x) = \sin x \) and \( \cos(2\pi - x) = -\cos x \), we have: \[ I = \int_{0}^{2\pi} \frac{(2\pi - x) \sin^8 x}{\sin^8 x + \cos^8 x} \, dx \] 2. **Step 2: Combine the two expressions for \( I \).** Now we can add the two expressions for \( I \): \[ 2I = \int_{0}^{2\pi} \frac{x \sin^8 x}{\sin^8 x + \cos^8 x} \, dx + \int_{0}^{2\pi} \frac{(2\pi - x) \sin^8 x}{\sin^8 x + \cos^8 x} \, dx \] This simplifies to: \[ 2I = \int_{0}^{2\pi} \frac{(x + (2\pi - x)) \sin^8 x}{\sin^8 x + \cos^8 x} \, dx = \int_{0}^{2\pi} \frac{2\pi \sin^8 x}{\sin^8 x + \cos^8 x} \, dx \] Thus, \[ I = \pi \int_{0}^{2\pi} \frac{\sin^8 x}{\sin^8 x + \cos^8 x} \, dx \] 3. **Step 3: Simplify the integral.** Now we can evaluate the integral \( \int_{0}^{2\pi} \frac{\sin^8 x}{\sin^8 x + \cos^8 x} \, dx \). Notice that: \[ \int_{0}^{2\pi} \frac{\sin^8 x}{\sin^8 x + \cos^8 x} \, dx + \int_{0}^{2\pi} \frac{\cos^8 x}{\sin^8 x + \cos^8 x} \, dx = \int_{0}^{2\pi} 1 \, dx = 2\pi \] Let \( J = \int_{0}^{2\pi} \frac{\sin^8 x}{\sin^8 x + \cos^8 x} \, dx \), then: \[ J + (2\pi - J) = 2\pi \] Therefore, \( J = \pi \). 4. **Step 4: Substitute back to find \( I \).** Now substituting back into our equation for \( I \): \[ I = \pi \cdot \pi = \pi^2 \] Thus, the final result is: \[ \boxed{\pi^2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos
  • JEE ( MAIN) 2020 QUESTIONS WITH SOLUTIONS B.ARCH (6TH JAN -MORING)

    MCGROW HILL PUBLICATION|Exercise Question|25 Videos

Similar Questions

Explore conceptually related problems

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

If I=int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx, then the value of I is

int_(0)^( pi)sin^(8)x cos^(6)xdx

int_(0)^( pi/2)sin^(8)x cos^(2)xdx=

Let I=int_(10)^(20)(sin(30-x))/(sin x+sin(30-x))dx .Then I equals

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

Find the value of int_0^(2pi) (xsin^8 x)/(sin^8 x + cos^8 x)dx

If I=int_(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0 , then I equals

MCGROW HILL PUBLICATION-JEE ( MAIN) 2020 QUESTIONS (9TH JAN-MORNING)-JEE (Main) 2020 Questions with Solution Mathematics (9th Jan - Morning)
  1. Value of cos^3 (pi/8)cos^3 ((3pi)/8) + sin^3 (pi/8)sin^3 ((3pi)/8) is

    Text Solution

    |

  2. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  3. Let I=int(0)^(2pi)(xsin^(8)x)/(sin^(8)x+cos^(8)x)dx, then I is equal t...

    Text Solution

    |

  4. If plane x + 4y - 2z = 1, x + 7y – 5z = beta, x + 5y + alphaz = 5 in...

    Text Solution

    |

  5. If e(1) and e(2) are the eccentricities of the ellipse (x^(2))/(18)+(y...

    Text Solution

    |

  6. F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^...

    Text Solution

    |

  7. If A = [{:(1,1,2),(1,3,4),(1,-1,3):}], B = adj A and C = 3A then (|ad...

    Text Solution

    |

  8. If a circle touches y-axis at (0, 4) and passes through (2, 0) then wh...

    Text Solution

    |

  9. If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

    Text Solution

    |

  10. If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 t...

    Text Solution

    |

  11. The negation of 'sqrt5 is an integer or 5 is an irrational number' is

    Text Solution

    |

  12. if f(x) = a+bx +cx^(2), then what is int(0)^(1)f(x) dx equal to ?

    Text Solution

    |

  13. If the number of five digit numbers with distinct digit and 2 at the 1...

    Text Solution

    |

  14. For observations xi given sum(i=1)^10 (Xi - 5) = 10 and sum(i=1)^10 (...

    Text Solution

    |

  15. The integral int(dx)/((x+4)^(8//7)(x-3)^(6//7)) is equal to : (where C...

    Text Solution

    |

  16. v36.3

    Text Solution

    |

  17. If the vectors, P=(a+1)i+aj+ak,q=ai+(a+1)j+ak and r=ai+aj+(a+1)k,(a in...

    Text Solution

    |

  18. The prejection of the line segment joining the poing (1, -1, 3) and (2...

    Text Solution

    |

  19. Find the number of solution of log(1/2) |sinx| = 2 - log(1/2) |cosx|, ...

    Text Solution

    |

  20. If for x ge 0, y = (x) is the solution of the differential equation, ...

    Text Solution

    |