Home
Class 12
MATHS
If the vectors, P=(a+1)i+aj+ak,q=ai+(a+1...

If the vectors, `P=(a+1)i+aj+ak,q=ai+(a+1)j+ak` and `r=ai+aj+(a+1)k,(a in R)` are coplanar and `3(p*q)^(2)-lamda|rxxq|^(2)=0` , then the value of `lamda` is _______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define the vectors Given the vectors: - \( \mathbf{p} = (a+1)\mathbf{i} + a\mathbf{j} + a\mathbf{k} \) - \( \mathbf{q} = a\mathbf{i} + (a+1)\mathbf{j} + a\mathbf{k} \) - \( \mathbf{r} = a\mathbf{i} + a\mathbf{j} + (a+1)\mathbf{k} \) ### Step 2: Check for coplanarity Vectors \( \mathbf{p}, \mathbf{q}, \mathbf{r} \) are coplanar if the determinant of the matrix formed by their coefficients is zero: \[ \begin{vmatrix} a+1 & a & a \\ a & a+1 & a \\ a & a & a+1 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Calculating the determinant: \[ D = (a+1) \begin{vmatrix} a+1 & a \\ a & a+1 \end{vmatrix} - a \begin{vmatrix} a & a \\ a & a+1 \end{vmatrix} + a \begin{vmatrix} a & a+1 \\ a & a \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} a+1 & a \\ a & a+1 \end{vmatrix} = (a+1)(a+1) - a^2 = a^2 + 2a + 1 - a^2 = 2a + 1 \) 2. \( \begin{vmatrix} a & a \\ a & a+1 \end{vmatrix} = a(a+1) - a^2 = a \) 3. \( \begin{vmatrix} a & a+1 \\ a & a \end{vmatrix} = a^2 - a(a+1) = -a \) Substituting back into \( D \): \[ D = (a+1)(2a + 1) - a(a) - a(-a) = (a+1)(2a + 1) - a^2 + a^2 = (a+1)(2a + 1) \] Setting \( D = 0 \): \[ (a+1)(2a + 1) = 0 \] This gives us two cases: 1. \( a + 1 = 0 \) → \( a = -1 \) 2. \( 2a + 1 = 0 \) → \( a = -\frac{1}{2} \) ### Step 4: Calculate \( \mathbf{p} \cdot \mathbf{q} \) and \( \mathbf{r} \times \mathbf{q} \) Now we need to find \( 3(\mathbf{p} \cdot \mathbf{q})^2 - \lambda |\mathbf{r} \times \mathbf{q}|^2 = 0 \). #### Calculate \( \mathbf{p} \cdot \mathbf{q} \): \[ \mathbf{p} \cdot \mathbf{q} = (a+1)a + a(a+1) + a^2 = a^2 + a + a^2 + a + a^2 = 3a^2 + 2a \] #### Calculate \( |\mathbf{r} \times \mathbf{q}| \): Using the determinant method for the cross product: \[ \mathbf{r} \times \mathbf{q} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a & a & a + 1 \\ a & a + 1 & a \end{vmatrix} \] Calculating this determinant gives us the components of \( \mathbf{r} \times \mathbf{q} \). ### Step 5: Substitute values into the equation Substituting the values of \( \mathbf{p} \cdot \mathbf{q} \) and \( |\mathbf{r} \times \mathbf{q}| \) into the equation: \[ 3(3a^2 + 2a)^2 - \lambda |\mathbf{r} \times \mathbf{q}|^2 = 0 \] ### Step 6: Solve for \( \lambda \) From the equation, we can isolate \( \lambda \): \[ \lambda = \frac{3(3a^2 + 2a)^2}{|\mathbf{r} \times \mathbf{q}|^2} \] ### Final Step: Find the value of \( \lambda \) After calculating the specific values for \( a = -1 \) and \( a = -\frac{1}{2} \), we will find the corresponding values of \( \lambda \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos
  • JEE ( MAIN) 2020 QUESTIONS WITH SOLUTIONS B.ARCH (6TH JAN -MORING)

    MCGROW HILL PUBLICATION|Exercise Question|25 Videos

Similar Questions

Explore conceptually related problems

If the vectors pi + j + k, i + qj + k and i + j + rk, where pneqnerne1 are coplanar, then : pqr- (p + q + r) =…..

If the vectors ai + j + k , i + bj + k and i + j + ck, where a, b, c ne1 , are coplanar, then : 1/(1-a)+1/(1-b)+1/(1-c)=…

If the vectors p hat(i)+hat(j)+hat(k), hat(i)+q hat(j)+hat(k) and hat(i)+hat(j)+r hat(k) (p ne q ne r ne 1) are coplanar, then the value of pqr -(p+q+r) is :

If the points P(1, -1, -1), Q(3, 1, lambda), R(0, 2, 1), S(-2, 0, 1) are coplanar, then lambda=

If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!=q!=r!=1) are coplanar then the value of pqr-(p+q+r) is (A) 0 (B) -1 (C) -2 (D) 2

MCGROW HILL PUBLICATION-JEE ( MAIN) 2020 QUESTIONS (9TH JAN-MORNING)-JEE (Main) 2020 Questions with Solution Mathematics (9th Jan - Morning)
  1. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  2. Let I=int(0)^(2pi)(xsin^(8)x)/(sin^(8)x+cos^(8)x)dx, then I is equal t...

    Text Solution

    |

  3. If plane x + 4y - 2z = 1, x + 7y – 5z = beta, x + 5y + alphaz = 5 in...

    Text Solution

    |

  4. If e(1) and e(2) are the eccentricities of the ellipse (x^(2))/(18)+(y...

    Text Solution

    |

  5. F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^...

    Text Solution

    |

  6. If A = [{:(1,1,2),(1,3,4),(1,-1,3):}], B = adj A and C = 3A then (|ad...

    Text Solution

    |

  7. If a circle touches y-axis at (0, 4) and passes through (2, 0) then wh...

    Text Solution

    |

  8. If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

    Text Solution

    |

  9. If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 t...

    Text Solution

    |

  10. The negation of 'sqrt5 is an integer or 5 is an irrational number' is

    Text Solution

    |

  11. if f(x) = a+bx +cx^(2), then what is int(0)^(1)f(x) dx equal to ?

    Text Solution

    |

  12. If the number of five digit numbers with distinct digit and 2 at the 1...

    Text Solution

    |

  13. For observations xi given sum(i=1)^10 (Xi - 5) = 10 and sum(i=1)^10 (...

    Text Solution

    |

  14. The integral int(dx)/((x+4)^(8//7)(x-3)^(6//7)) is equal to : (where C...

    Text Solution

    |

  15. v36.3

    Text Solution

    |

  16. If the vectors, P=(a+1)i+aj+ak,q=ai+(a+1)j+ak and r=ai+aj+(a+1)k,(a in...

    Text Solution

    |

  17. The prejection of the line segment joining the poing (1, -1, 3) and (2...

    Text Solution

    |

  18. Find the number of solution of log(1/2) |sinx| = 2 - log(1/2) |cosx|, ...

    Text Solution

    |

  19. If for x ge 0, y = (x) is the solution of the differential equation, ...

    Text Solution

    |

  20. The coefficient of x^(4) in the expansion of (1+x+x^(2))^(6) is

    Text Solution

    |