Home
Class 12
MATHS
If f(x)=a+bx+cx^(2), show that, int(0)^(...

If `f(x)=a+bx+cx^(2)`, show that, `int_(0)^(1)f(x)dx=(1)/(6)[f(0)+4f((1)/(2))+f(1)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x) is of the form f(x)=a+bx+cx^(2) show that int_(1)f(x)dx=(1)/(6){f(0)+4f((1)/(2))+f(1)}

Evaluate the following: If f(x)= a + bx + c x^2 , show that \int_{0}^1 f(x) = (1/6)[f(0) + 4f(1/2) + f(1)]

If (x) is of the form f(x)=a+b x+c x^2, show that int_0^1f(x)dx=1/6{f(0)+4f(1/2)+f(1)}

If f(x) is of the form f(x) = a + bx + cx^2 , show that underset(0)overset(1)intf(x) dx = 1/6 [f(0)+4f(1/2)+f(1)]

if f(x) = a+bx +cx^(2) , then what is int_(0)^(1)f(x) dx equal to ?

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)=1+x^(2)+x^(4)+x^(6)+…..oo then int_(0)^(x)f(x)dx=

If f(x)+f(3-x)=0 , then int_(0)^(3)1/(1+2^(f(x)))dx=