Home
Class 9
MATHS
prove that tan^(2)A-sin^(2)A=tan^(2)A*s...

prove that `tan^(2)A-sin^(2)A=tan^(2)A*sin^(2)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) tan^(2)A-sin^(2)A=tan^(2)A*sin^(2)A (ii) cot^(2)theta-cos^(2)theta=cot^(2)theta*cos^(2)theta .

Prove that : (i) tan^(2)A-sin^(2)A=tan^(2)A*sin^(2)A (ii) cot^(2)theta-cos^(2)theta=cot^(2)theta*cos^(2)theta .

Prove the following identities : tan^(2) A - sin^(2) A = tan^(2) A . sin^(2) A

Prove that sin^(2) A+ sin^(2) A tan^(2) A = tan^(2) A .

Prove that (sin^(2)A)/(cos^(2)A)+1=(tan^(2)A)/(sin^(2)A)

Prove that (i) (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )=(sin^(2)A- sin^(2)B) (ii) (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B)=(tan^(2)A- tan^(2)B)

If A=30^(@) , then prove that : cos2A=cos^(2)A-sin^(2)A " "=(1-tan^(2)A)/(1+tan^(2)A)

If A=30^(@) , then prove that : cos2A=cos^(2)A-sin^(2)A " "=(1-tan^(2)A)/(1+tan^(2)A)

If sin^(4)A+sin^(2)A=1 then prove that (1)/(tan^(4)A)+(1)/(tan^(2)A)=1

If 2tan^(2)alpha tan^(2)beta tan^(2)gamma+tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha=1 prove that sin^(2)alpha+sin^(2)beta+sin^(2)gamma=1