Home
Class 12
MATHS
Let [x] = the greatest integer le x, and...

Let [x] = the greatest integer `le x`, and `{x}= x-[x]` (x)=2[x]-{x}, `x lt 0` [x]+3{x} `x ge 0` then solve the equation `(x)=x+{x}`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [x]= the greatest integer =0 then solve the equation (x)=x+{x}

Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} then the tuue equations:

Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} then the tuue equations:

Let [x] denote the greatest integer in x .Then in the interval [0,3] the number of solutions of the equation,x^(2)-3x+[x]=0 is

Let f(x)={{:(2^([x]),, x lt0),(2^([-x]),,x ge0):} , then the area bounded by y=f(x) and y=0 is

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If [x] denotes the greatest integer le x , then number of solutions of the equation x^(2) - 2 - 2 [x] =0 is