Home
Class 12
MATHS
Let A=[(2,1),(0,3)] be a matrix. If A^(1...

Let `A=[(2,1),(0,3)]` be a matrix. If `A^(10)=[(a,b),(c,d)]` then prove that `a+d` is divisible by 13.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[[2,10,3]] be a matrix.If A^(10)=[[a,bc,d]]

Let x=[(2, 1),(0, 3)] be a matrix. If X^(6)=[(a, b),(c,d)] , then the number of divisors of (a+b+2020c+d) is equal to

Let x=[(2, 1),(0, 3)] be a matrix. If X^(6)=[(a, b),(c,d)] , then the number of divisors of (a+b+2020c+d) is equal to

Let A = [(1,0),(2,3)] and A^(n) = [(a, b),(c,d)] then lim_(n to oo) (b + c)/(a + d) =

Let A = [(1,0),(2,3)] and A^(n) = [(a, b),(c,d)] then lim_(n to oo) (b + c)/(a + d) =

If A=(0,1)B=(1,0),C=(1,2),D=(2,1) , prove that vec (A B)= vec (C D)

If A=(0,1)B=(1,0),C=(1,2),D=(2,1) , prove that vec A B= vec C Ddot

If A=(0,1)B=(1,0),C=(1,2),D=(2,1) , prove that vec A B= vec C Ddot

If A=(0,1)B=(1,0),C=(1,2),D=(2,1) , prove that vec A B= vec C Ddot

If A=([1,0],[2,1]) and A^(10)=([a,b],[c,d]) then a+b+c+d