Home
Class 10
MATHS
The value of (sin^3 theta + cos^3 theta)...

The value of `(sin^3 theta + cos^3 theta)/(sin theta+ costheta)+((cos^3 theta - sin^3 theta))/(cos theta - sin theta)` is

A

2

B

1

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} + \frac{\cos^3 \theta - \sin^3 \theta}{\cos \theta - \sin \theta}\), we will use the identities for the sum and difference of cubes. ### Step-by-Step Solution: 1. **Identify the components of the expression**: The expression consists of two parts: \[ A = \frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} \] \[ B = \frac{\cos^3 \theta - \sin^3 \theta}{\cos \theta - \sin \theta} \] 2. **Apply the sum of cubes formula**: The sum of cubes formula states that: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Here, let \(a = \sin \theta\) and \(b = \cos \theta\): \[ \sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta) \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), we can simplify: \[ \sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta) \] 3. **Substitute back into \(A\)**: Now substituting this back into \(A\): \[ A = \frac{(\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta)}{\sin \theta + \cos \theta} \] We can cancel \((\sin \theta + \cos \theta)\) (assuming \(\sin \theta + \cos \theta \neq 0\)): \[ A = 1 - \sin \theta \cos \theta \] 4. **Apply the difference of cubes formula**: The difference of cubes formula states that: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Here, we apply it to \(B\): \[ \cos^3 \theta - \sin^3 \theta = (\cos \theta - \sin \theta)(\cos^2 \theta + \sin^2 \theta + \sin \theta \cos \theta) \] Again, since \(\cos^2 \theta + \sin^2 \theta = 1\): \[ \cos^3 \theta - \sin^3 \theta = (\cos \theta - \sin \theta)(1 + \sin \theta \cos \theta) \] 5. **Substitute back into \(B\)**: Now substituting this back into \(B\): \[ B = \frac{(\cos \theta - \sin \theta)(1 + \sin \theta \cos \theta)}{\cos \theta - \sin \theta} \] We can cancel \((\cos \theta - \sin \theta)\) (assuming \(\cos \theta - \sin \theta \neq 0\)): \[ B = 1 + \sin \theta \cos \theta \] 6. **Combine \(A\) and \(B\)**: Now we can combine \(A\) and \(B\): \[ A + B = (1 - \sin \theta \cos \theta) + (1 + \sin \theta \cos \theta) \] Simplifying this gives: \[ A + B = 1 - \sin \theta \cos \theta + 1 + \sin \theta \cos \theta = 2 \] ### Final Answer: The value of the expression is \(2\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MCGROW HILL PUBLICATION|Exercise Multiple Choice Questions|50 Videos
  • TRANSPARENT PAPER FOLDING

    MCGROW HILL PUBLICATION|Exercise EXAMPLE|2 Videos
  • VERIFICATION OF TRUTH OF THE STATEMENT

    MCGROW HILL PUBLICATION|Exercise Exercise|25 Videos

Similar Questions

Explore conceptually related problems

((sin^(3)theta+cos^(3)theta)/(sin theta+cos theta)+(cos^(3)theta+sin^(3)theta)/(cos theta+sin theta))=?

((sin^(3)theta+cos^(3)theta)/(sin theta+cos theta)+(cos^(3)theta+sin^(3)theta)/(cos theta+sin theta))=?

The value of (sin theta - 2 sin^3 theta)/(2 cos^3 theta-cos theta) is

The value of (sin^3theta+cos^3theta)/(sintheta+costheta) +sin theta cos theta is:

Prove each of the following identities : (cos^(3) theta + sin^(3) theta)/(cos theta + sin theta ) + (cos^(3) theta - sin^(3) theta)/(cos theta - sin theta ) = 2

(sin ^ (3) theta + sin3 theta) / (sin theta) + (cos ^ (3) theta-cos3 theta) / (cos theta) =

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

(sin 3theta)/(sin theta)-(cos 3theta)/(cos theta)=

The value of (cos^(3)theta+sin^(3)theta)/(costheta+sintheta)+(cos^(3)theta-sin^(3)theta)/(costheta-sintheta) is equal to

Prove: (cos^(3)theta+sin^(3)theta)/(cos theta+sin theta)+(cos^(3)theta-sin^(3)theta)/(cos theta-sin theta)=2

MCGROW HILL PUBLICATION-TRIGONOMETRY-Multiple Choice Questions
  1. If A +B+C= pi and m/C is obtuse then tan A. tan B is

    Text Solution

    |

  2. If tan A=1/2 and tan B=1/3 , then the value of A+B is

    Text Solution

    |

  3. The value of (sin^3 theta + cos^3 theta)/(sin theta+ costheta)+((cos^3...

    Text Solution

    |

  4. The extremum values of cos x are :

    Text Solution

    |

  5. The value of sin^2 alpha cos^2 beta + cos^2 alpha sin^2 beta + sin^2 a...

    Text Solution

    |

  6. If A= cos^(4)theta+sin^(2)theta , then for all values of theta :

    Text Solution

    |

  7. If tan theta=a/b, then the value of b cos 2theta+asin 2 theta is

    Text Solution

    |

  8. If A lies in the third quardrant and 3 tan A -4 =0 , then 5 sin 2A+3 s...

    Text Solution

    |

  9. If sin A+sin B + sin C =3, then the value of cos A + cos B + cos C is

    Text Solution

    |

  10. If x=ycos((2pi)/(3))=zcos((4pi)/(3)),then what is xy + yz + zx equal t...

    Text Solution

    |

  11. (1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is...

    Text Solution

    |

  12. If (sinx)/(1+cosx)+(sinx)/(1-cosx)=4 and 0^@ le x le 90^@, then the va...

    Text Solution

    |

  13. The equation a "sin" x+b "cos" x = c, " where"|c| gt sqrt(a^(2) + b^(2...

    Text Solution

    |

  14. The value of 16 sin 144^@ sin 108^@ sin 72^@ sin 36^@ is equal to

    Text Solution

    |

  15. cos 2x + 2cos x is always :-

    Text Solution

    |

  16. If sin theta+ cosec theta =2, then sin^n theta+"cosec"^n theta is equa...

    Text Solution

    |

  17. The value of [sqrt3 cot 20^(@) -4 cos 20^(@)] is equal to-

    Text Solution

    |

  18. The value of sqrt3"cosec"20^@ - sec 20^@ is equal to

    Text Solution

    |

  19. If sin theta + sin^2 theta =1, then the value of cos^2 theta + cos^ 4 ...

    Text Solution

    |

  20. If x=sec^2 theta + cos^2 theta ,theta ne theta , then the value of x i...

    Text Solution

    |