Home
Class 10
MATHS
If t(n)=(1+(-2)^(n))/(n-1), find t(6)-t(...

If `t_(n)=(1+(-2)^(n))/(n-1)`, find `t_(6)-t_(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( t_6 - t_5 \) using the formula given for \( t_n \): \[ t_n = \frac{1 + (-2)^n}{n - 1} \] ### Step 1: Calculate \( t_6 \) Substituting \( n = 6 \) into the formula: \[ t_6 = \frac{1 + (-2)^6}{6 - 1} \] Calculating \( (-2)^6 \): \[ (-2)^6 = 64 \] Now substituting back into the equation: \[ t_6 = \frac{1 + 64}{5} = \frac{65}{5} = 13 \] ### Step 2: Calculate \( t_5 \) Now substituting \( n = 5 \) into the formula: \[ t_5 = \frac{1 + (-2)^5}{5 - 1} \] Calculating \( (-2)^5 \): \[ (-2)^5 = -32 \] Now substituting back into the equation: \[ t_5 = \frac{1 - 32}{4} = \frac{-31}{4} \] ### Step 3: Calculate \( t_6 - t_5 \) Now we can find \( t_6 - t_5 \): \[ t_6 - t_5 = 13 - \left(-\frac{31}{4}\right) \] This simplifies to: \[ t_6 - t_5 = 13 + \frac{31}{4} \] To combine these, we convert 13 into a fraction with a denominator of 4: \[ 13 = \frac{52}{4} \] Now we can add the fractions: \[ t_6 - t_5 = \frac{52}{4} + \frac{31}{4} = \frac{52 + 31}{4} = \frac{83}{4} \] ### Final Answer Thus, the final answer is: \[ t_6 - t_5 = \frac{83}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • ARITHMETIC PROGRESSION (A.P.)

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|15 Videos
  • ANALYTICAL REASONING

    MCGROW HILL PUBLICATION|Exercise EXERCISE|24 Videos
  • ARITHMETICAL REASONING TEST

    MCGROW HILL PUBLICATION|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

If {t_(n)} is n A.p.such that (t_(4))/(t_(1))=(2)/(3), find (t_(8))/(t_(9))

If t_(n)=(1)/(4)(n+2)(n+3) for n=1,2,3 then (1)/(t_(1))+(1)/(t_(2))+(1)/(t_(3))+...+(1)/(t_(2003))=

Find the indicated terms in each of the following sequences whose nth nth terms are: t_(n)=(n^(2)(n+1))/(3),t_(1),t_(2)

If t+n=sum_(1)^(n)n then find t_(n)^( prime)=sum_(1)^(n)t_(n)

The Fibonacci sequence is defence by t_(1)=t_(2)=1,t_(n)=t_(n-1)+t_(n-2)(n>2). If t_(n+1)=kt_(n) then find the values of k for n=1,2,3 and 4.

If sum_(r=1)^(n)T_(r)=(3^(n)-1), then find the sum of sum_(r=1)^(n)(1)/(T_(r))

Find the indicated terms in each of the following sequences whose nth nth terms are: t_(n)=(n^(2))/(2^(n)),t_(4),t_(6)

Find the terms (s) indicated in each case: (i) t_(n)=t_(n-1)+3(ngt1),t_(1)=1,t_(4) (ii) T_(n)=(T_(n-1))/(T_(n-2)),(ngt2),T_(1)=1,T_(2)=2,T_(6)

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .