Home
Class 11
MATHS
" 9.The value of "lim(n rarr oo)(1*n+2*(...

" 9.The value of "lim_(n rarr oo)(1*n+2*(n-1)+3*(n-2)+....+n*1)/(1^(2)+2^(2)+...+n^(2))" ,is : "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n rarr oo)(1^(2)*n+2^(2)*(n-1)+......+n^(2)*1)/(1^(3)+2^(3)+......+n^(3)) is equal to

underset n rarr oo n has the value: Lim_ (n rarr oo) (1 * n + 2 (n-1) +3 (n-2) + ...... + n.1) / (1 ^ ( 2) + 2 ^ (2) + 3 ^ (2) + ...... + n ^ (2))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))