Home
Class 10
MATHS
" Prove that: "sin^(2)theta+((1)/(1+tan^...

" Prove that: "sin^(2)theta+((1)/(1+tan^(2)theta))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

tan theta+(1)/(tan theta)=2 then prove that tan^(2)theta+(1)/(tan^(2)theta)=2

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta

Prove that (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) - sin^(2) theta

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

If k tan theta=tan k theta , then prove that (sin^(2)k theta)/(sin^(2)theta)=(k^(2))/((k^(2)-1)sin^(2)theta+1).

Prove that : (i) (1)/(1+tan^(2)theta)+(1)/(1+cot^(2)theta)=1 (ii) sin^(2)theta+(1)/(1+tan^(2)theta)=1

Prove that : (i) (1)/(1+tan^(2)theta)+(1)/(1+cot^(2)theta)=1 (ii) sin^(2)theta+(1)/(1+tan^(2)theta)=1

Prove the following identities: (1+tan^(2)theta)+(1+1/(tan^(2)theta))=1/(sin^(2)theta-sin^(4)theta)

Prove that: (sin2 theta)/(1+cos2 theta)=tan theta