Home
Class 11
MATHS
" If "tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3a...

" If "tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))=k tan^(-1)((x)/(a))" then "k=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a .

If y = Tan^(-1)((3a^2x-x^3)/(a^3-3ax^2)) then (dy)/(dx)=

Write the following in the simplest form: tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))

Prove that tan^(-1)((3a^2x-x^3)/(a^3-3ax^2))=3tan^(-1)""(x)/a, agt 0 ,(-a)/sqrt3lexlea/sqrt3

Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

If 3 tan ^(-1)((1)/(2+sqrt(3)))-tan ^(-1) (1)/(x)=tan ^(-1) (1)/(3) then x=

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=