Home
Class 12
MATHS
" 18.Solve "cos^(2)x(dy)/(dx)-y tan2x=co...

" 18.Solve "cos^(2)x(dy)/(dx)-y tan2x=cos^(4)x," where "|x|<(pi)/(4)" and "y((pi)/(6))=(3sqrt(3))/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of the equation cos^2x(dy)/(dx)-(tan2x)y=cos^4x , where |x|< pi/4 and y(pi/6)=(3sqrt(3))/8 is

Solution of the equation cos^2x(dy)/(dx)-(tan2x)y=cos^4x , where |x|< pi/4 and y(pi/6)=(3sqrt(3))/8 is

Solution of the equation cos^2x(dy)/(dx)-(tan2x)y=cos^4x , where |x|< pi/4 and y(pi/6)=(3sqrt(3))/8 is

Solution of the equation cos^2x(dy)/(dx)-(tan2x)y=cos^4x , where |x|< pi/4 and y(pi/6)=(3sqrt(3))/8 is

Solution of the equation cos^(2)x(dy)/(dx)-(tan2x)y=cos^(4)x,|x|<(pi)/(4), wheny ((pi)/(6))=(3sqrt(3))/(8)is

Solve (dy)/(dx)+y tan x=y^(2)sec x

Solve (dy)/(dx)+y tan x=y^(2)sec x

Solve (dy)/(dx)+y tan x=y^(2)sec x

An integrating factor of the differential equation cos^(2) x (dy)/(dx) - (tan 2x) y = cos^(4) x is

Solve : cos^(2) x dy/dx - tan2 x cdot y = cos^(4)x, given y=(3sqrt(3))/8 when x = pi/6