Home
Class 12
MATHS
If sin x + sin^(2) x =1 " then " cos^(...

If ` sin x + sin^(2) x =1 " then " cos^(8) x + 2 cos^(6) x + cos^(4) x = `

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x + sin ^(2) x=1 then the value of (cos ^(8) x+2 cos ^(6)x +cos ^(4) x) is-

If sin x + sin^(2) x= 1 , then the value of cos^(8) x - cos ^(4) x + 2cos^(2)x -1 is equal to :

If sinx + sin^(2)x =1 then cos^(12)2x + 3cos^(10)x+3cos^(8)x + cos^(6)x =

If sinx + sin^(2)x + sin^(3)x = 1 , then : cos^(6)x - 4cos^(4)x + 8cos^(2)x equals :

If sin x+sin^(2)x=1 then write the value of cos^(8)x+2cos^(6)x+cos^(4)x

sin x + sin^(2) x + sin^(3) x = 1 rArr cos^(6) x - 4cos^(4) x + cos^(2) x =

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .

If cos x + cos^(2) x =1 , " then " sin^(12) x + 3 sin^(10)x + 3sin^(8) x + sin^(6) x =

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

If sinx+ sin^2x =1 , then cos^8x+ 2cos^6x +cos^4x =