Home
Class 12
MATHS
Prove that : cos^2 (beta-gamma) + cos^2 ...

Prove that : `cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

det [[1, cos (beta-alpha), cos (gamma-alpha) cos (alpha-beta), 1, cos (gamma-beta) cos (beta-alpha), cos (beta-gamma), 1]] =

cos alpha sin (beta-gamma)+cos beta sin (gamma-alpha) +cos gamma(sin alpha-beta)=

cos alpha sin (beta-gamma)+cos betasin (gamma-alpha+cos gamma sin (alpha-beta)=

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos(alpha+beta)/(2)cos(beta+gamma)/2cos(gamma+alpha)/2

Prove that cos alpha+cos beta+cos gamma+cos (alpha+beta+gamma) =4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

A=[(1, cos (beta-alpha),cos(gamma-alpha)),(cos (alpha-beta), 1, cos(gamma-beta)),(cos (alpha-gamma),cos (beta-gamma),1)]=