Home
Class 12
MATHS
The value of inte^(pi^2) [logpi x]\ d(lo...

The value of `int_e^(pi^2) [log_pi x]\ d(log_e x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

The value of int_(e)^(pi^(2))[log_(pi)x]d(log_(e)x) (where [.] denotes greatest integer function) is

The value of int_(e)^(pi^(2))[log_(pi)x]d(log_(e)x) (where [.] denotes greatest integer function) is

The value of int (e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x))dx is equal to

int_0^(pi/2) cos^3x e^(log_e sinx) dx=

The value of int_(e)[log_(pi)x]dx is (where [.] denotes the greatest integer function)

The value of integral int_(e^(-1))^(e^2) |(log_e x)/(x)| dx is :

Write a value of int(e^(x(log)_e a)+e^(a(log)_e x))\ dx

Write a value of int(e^(x(log)_e a)+e^(a(log)_e x))\ dx