Home
Class 12
MATHS
underset(x rarr 0)(lim) (cos 4x - 4 cos ...

`underset(x rarr 0)(lim) (cos 4x - 4 cos 2x + 3)/(x^(4)) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(cos4x-4cos2x+3)/(x^(4))=

underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x) is equal to :

The limit underset( x rarr0 ) ( "lim") ( 1- cos x sqrt( cos 2x) )/( x^(2)) is equal to

underset( x rarr 0 ) ( "Lim") ((x- 1+ cos x )/( x))^((1)/( x))

underset(x rarr 0)lim ((1-cos 2x) (3+cos x))/(x tan 4x) is equal to -

If l = underset( x rarr 0) ("Lim")( x ( 1+ a cos x ) - bsin x ) /( x^(3))= underset( x rarr 0 ) ("Lim") ( 1+a cos x ) /( x^(2))- underset( x rarr 0 ) ("lim")( b sin x )/( x^(3)) , where l in R , then

lim_ (x rarr0) (cos (tan x) -cos x) / (x ^ (4)) =

underset( x rarr 0 ) ( "lim")( x tan 2x - 2x ta n x )/(( 1- cos 2x)^(2)) is