Home
Class 11
MATHS
If f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^...

If `f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^(prime)(x)=` ______ for x>20

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-2| a n d g(x)=f[f(x)],t h e n g^(prime)(x)= ______ for x>20

If f(x)=|x-2| a n d g(x)=f[f(x)],t h e n g^(prime)(x)= ______ for x>20

Evaluate: ifintg(x)dx=g(x),t h e nintg(x){f(x)+f^(prime)(x)}dx

If f(x)=(x+1)/(x-1)a n dg(x)=1/(x-2),t h e n discuss the continuity of f(x),g(x),a n dfog(x)dot

If f(x)=(x+1)/(x-1)a n dg(x)=1/(x-2),t h e n discuss the continuity of f(x),g(x),a n dfog(x)dot

If f(x)=(x+1)/(x-1)a n dg(x)=1/(x-2),t h e n discuss the continuity of f(x),g(x),a n dfog(x)dot

Let f(x)a n dg(x) be two differentiable functions in R a n d f(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot

Let f(x)a n dg(x) be two differentiable functions in R a n d f(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot