Home
Class 12
MATHS
If the matrix A is involutary, show that...

If the matrix A is involutary, show that `(1)/(2)(I+A)` and `(1)/(2)(I-A)` are idempotent and `(1)/(2)(I+A)(1)/(2)(I-A)=O`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (1+ 2i)/(3+4i) xx (1-2i)/(3-4i) is real

Simplify : (1+2i)/(1-2i)-(1-2i)/(1+2i)

Show that , ((1+i)/(1-i))^2+((1-i)/(1+i))^2 is a real number.

A square matrix A is used to be an idempotent matrix if A^(2) = A . If A is an idempotent matrix and B = I -A, then-

if A = [(I,0)(0,-i)] then show that A^(2) = -1 (i^(2)=-1) .

If for a matrix A, A= A^(-1) , then show that A(A^(3)+I)=A+I (I is the unit matrix).

Show that (1- 2i )/( 3 - 4i ) + (1 + 2i )/( 3 + 4i ) is real.

" *.i).i) If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)