Home
Class 12
MATHS
If alpha , beta are complementary angles...

If `alpha , beta` are complementary angles , `sin alpha = 3//5` , then ` sin alpha cos beta - cos alpha sin beta `=

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are complementary angles and sin alpha = (3)/(5) , then sin alpha cos beta - cos alpha sin beta =

If alpha,beta are complementary angles and sin alpha=(3)/(5), then sin alpha cos beta-cos alpha sin beta=

If alpha, beta are complementary angles, sin alpha = (3)/(5) then cos alpha cos beta-sin alpha sin beta =

If alpha,beta are complementary angles, sin alpha=(4)/(5), then sin alpha cos beta+cos alpha sin beta=

If alpha , beta are complementry angles such that bsin alpha = a , the find the value of (sin alpha cos beta - cos alpha sin beta) .

If alpha , beta are complementary angles , then sin^(2) alpha + sin^(2) beta =

If alpha and beta are complementary angles, then show that cot beta+cos beta= (cos beta)/(cos alpha) (1+sin beta) .

Using vectors prove that sin(alpha - beta) = sin alpha cos beta- cos alpha sin beta .

Using vectors, prove that sin (alpha+beta)=sin alpha cos beta+ cos alpha sin beta .

(i) sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta) (ii) sin (alpha-beta)= sin alpha cos beta- cos alpha sin beta Proof