Home
Class 12
MATHS
If y=e^(a sin^(-1)x) then prove that dy/...

If `y=e^(a sin^(-1)x)` then prove that `dy/dx=(ay)/(sqrt(1-x^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = e^(asin^(-1)x) then prove that (dy)/(dx) = (ay)/(sqrt(1 - x^2))

If x=sqrt(a^(sin^(-1)t)) then prove that (dy)/(dx)=(-y)/(x)

If y=x sin^(-1)x+sqrt(1-x^(2)) " then prove that " dy/dx=sin^-1x.

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .