Home
Class 12
MATHS
If intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^...

If `intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^(2)+c,` then `f(x)` can be

Promotional Banner

Similar Questions

Explore conceptually related problems

If intf(x)sec^(2)xdx=(1)/(2)[f(x)]^(2)+c, then : f(x) can be

If intf(x)dx=2[f(x)]^(3)+c , then f(x) can be

If f(x)cosx dx=(1)/(2)f^(2)(x)+c , then f(x) is :

If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equal to

If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equal to

If intf (x)sinx cosx dx=(1)/(2(a^(2)-b^(2)))log|f(x)|+C ,then f (x)=

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be