Home
Class 11
MATHS
Let a, r, s, t be non-zero real numbers....

Let a, r, s, t be non-zero real numbers. Let `P(at^2, 2at), Q, R(ar^2, 2ar) and S(as^2, 2as)` be distinct points onthe parabola `y^2 = 4ax`. Suppose that PQ is the focal chord and lines QR and PK are parallel, where K isthe point (2a, 0). The value of r is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2ar)andS(as^(2),2as) be distinct points on the parabola y^(2)=4ax . Suppose that PQ is the focal chord and lines QR and PK are parallel, where K the point (2a,0). The value of r is

Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2ar)andS(as^(2),2as) be distinct points on the parabola y^(2)=4ax . Suppose that PQ is the focal chord and lines QR and PK are parallel, where K the point (2a,0). If st=1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2ar)andS(as^(2),2as) be distinct points on the parabola y^(2)=4ax . Suppose that PQ is the focal chord and lines QR and PK are parallel, where K the point (2a,0). If st=1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2ar)andS(as^(2),2as) be distinct points on the parabola y^(2)=4ax . Suppose that PQ is the focal chord and lines QR and PK are parallel, where K the point (2a,0). If st=1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2ar)andS(as^(2),2as) be distinct points on the parabola y^(2)=4ax . Suppose that PQ is the focal chord and lines QR and PK are parallel, where K the point (2a,0). If st=1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2ar)andS(as^(2),2as) be distinct points on the parabola y^(2)=4ax . Suppose that PQ is the focal chord and lines QR and PK are parallel, where K the point (2a,0). If st=1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

Let P(at^(2),2at),Q,R(ar^(2),2ar) be three points on a parabola y^(2)=4ax . If PQ is the focal chord and PK, QR are parallel where the coordinates of k is (2a,0), then the value of r is

Let P , Q and R are three co-normal points on the parabola y^2=4ax . Then the correct statement(s) is /at