Home
Class 12
MATHS
In isosceles triangles A B C ,| vec A B|...

In isosceles triangles `A B C ,| vec A B|=| vec B C|=8,` a point `E` divides `A B` internally in the ratio 1:3, then find the angle between ` vec C Ea n d vec C A(w h e r e| vec C A|=12)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec a|+|vec b|=|vec c| and vec a+vec b=vec c, then find the angle between vec a and vec b

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

Vector vec a , vec b and vec c are such that vec a+ vec b+ vec c= vec0 and |a|=3,| vec b|=5 and | vec c|=7. Find the angle between vec a and vec b .

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ vec C D=c\ T h e n\ vec A E=

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ Cvec D=vecC.T h e n\ vec A E=