Home
Class 12
MATHS
If veca,vecb,vecc and vecd are unit vec...

If `veca,vecb,vecc and vecd` are unit vectors such that `(vecaxxvecb)*(veccxxvecd)=1 and veca.vecc=1/2,` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc and vecd are unit vectors such that (vecaxx vecb).(veccxxvecd)=1 and veca.vecc=1/2 then

If veca , vecb, vecc and vecd are unit vectors such that (veca xx vecb). (veccxx vecd) =1 and veca. Vecc= 1/2 then :

If veca, vecb,vecc and vecd are distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If veca, vecb, vecc and vecd are distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecb-vecc)ne 0

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If veca,vecb,vecc,vecd are coplaner vectors, then (vecaxxvecb)xx(veccxxvecd)=

If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2 , vecc.vecd=1/2 and angle between veca xx vecb and vecc xx vecd is pi/6 then the value of |[veca \ vecb \ vecd]vecc-[veca \ vecb \ vecc]vecd|=

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0