Home
Class 12
MATHS
If a and b are real and i=sqrt(-1) then ...

If a and b are real and `i=sqrt(-1)` then `sin[i ln((a+ib)/(a-ib))]` is equal to 1) `(2ab)/(a^(2)-b^(2))` 2) `(-2ab)/(a^(2)-b^(2))` 3)`(2ab)/(a^(2)+b^(2))` 4) `(-2ab)/(a^(2)+b^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan [ i log ((a - ib)/(a + ib )) ] is equal to : a) ab b) (2 ab)/( a ^(2) - b ^(2)) c) (a ^(2) - b ^(2))/( 2 ab) d) (2 ab)/( a ^(2) + b ^(2))

tan (i log ((a-ib)/(a+ib))) = (i) ab (ii) (2ab)/(a^(2) -b^(2)) (iii) (a^( 2) -b^(2))/(ab) (iv) (2ab)/(a^(2)+b^(2))

Prove that tan(i log_(e)((a-ib)/(a+ib)))=(2ab)/(a^(2)-b^(2)) (where a,b in R^(+))

Show that |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)

(a^2+b^2+2ab)-(a^2+b^2-2ab)

sqrt(4ab - 2i (a^(2) - b^(2) ) =

Prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .