Home
Class 12
MATHS
A variable line ax+by+c=0 , where a, b, ...

A variable line ax+by+c=0 , where a, b, c are in A.P. is normal to a circle `(x-alpha)^2+(y-beta)^2=gamma`, which is orthogonal to circle `x^2+y^2-4x-4y-1=0` .The value of `alpha + beta+ gamma` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha ,beta ,gamma are roots of x^(3)+x^(2)-5x-1=0 then [alpha] + [beta] +[ gamma ] is equal to

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

alpha,beta,gamma roots of 4x^(3)+8x^(2)-x-2=0 ,then value of (4(alpha+1)(beta+1)(gamma+1))/(alpha beta gamma) is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to