Home
Class 12
MATHS
(1)/(x^(3)), (1)/(x^(2)), (1)/(x), x ,x^...

`(1)/(x^(3)), (1)/(x^(2)), (1)/(x), x ,x^(2),x^(3)`
If `-1 lt x lt 0`, what is the median of the six numbers in the list above ?

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(x^(3)),(1)/(x^(2)), (1)/(x),x^(2),x^(3) If -1ltxlt0 , what is the median of the five numbers in the list above?

(x + 1) / (x (x ^ (2) -2x-3)) <= 0

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If |x - 2| lt 3 then -1 lt x lt 5 .

If (sin^(-1)x)^(2)-(cos^(-1)x)^(2)=a , 0 lt x lt 1 , a ne 0 , then the value of 2x^(2)-1 is

(1) / (x + 1)-(2) / (x ^ (4) -x + 1) <(1-2x) / (x ^ (3) +1)

If the median of the data , x_(1) , x_(2) , x_(3) , x_(4) , x_(5) , x_(6) , x_(7) , x_(8) is a , then find the median of the data is x_(3) , x_(4) , x_(5) , x_(6) . (where x_(1) lt x_(2) lt x_(3) lt x_(4) lt x_(5) lt x_(6) lt x_(7) lt x_(8) )