Home
Class 12
MATHS
(x^2+1)dy=2x y dx ; y(1)=2...

`(x^2+1)dy=2x y dx ; y(1)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .

(1+x^(2))dy=y^(2)dx

x^2dy+(y-1/x)dx=0 at y(1)=1 then find the value of y(1/2)

If y^(2) -2x^(2) = y , then dy/dx at (1,-1) is

Solve: (dy) / (dx) = (y (x + 2y)) / (x (2x + y)), y (1) = 2

(1+x^(2))(dy)/(dx) = 1-y

If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

y(1+x^(2))dy=x(1+y^(2))dx