Home
Class 12
MATHS
Function f(x)= sin (lnx)-cos(lnx) is...

Function `f(x)= sin (lnx)-cos(lnx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=x/(sqrt(sin(lnx)-cos(lnx))),(n in Z) is (a) (e^(2npi),e^((3n+1/2)pi)) (b) (e^((2n+1/4)pi),e^((2n+5/4)pi)) (e^((2n+1/4)pi),e^((2n-3/4)pi)) (d) none of these

The domain of the function f(x)=x/(sqrt(sin(lnx)-cos(lnx))),(n in Z) is (a) (e^(2npi),e^((3n+1/2)pi)) (b) (e^((2n+1/4)pi),e^((2n+5/4)pi)) (e^((2n+1/4)pi),e^((2n-3/4)pi)) (d) none of these

The domain of the function f(x)=x/(sqrt(sin(lnx)-cos(lnx))),(n in Z) is (a) (e^(2npi),e^((3n+1/2)pi)) (b) (e^((2n+1/4)pi),e^((2n+5/4)pi)) (c) (e^((2n+1/4)pi),e^((2n-3/4)pi)) (d) none of these

Find the values of x where f(x)=sin(lnx)-cos(lnx) in strictly increasing.

Find the values of x where f(x)=sin(lnx)-cos(lnx) in strictly increasing.

f(x)=x^(2)+lnx

For function f(x)=(lnx)/(x), which of the following statements are true?

For function f(x)=(lnx)/(x), which of the following statements are true?

What is the derivative of the function f(x)=e^(tanx)+ln(secx)-e^(lnx)" at "x=(pi)/(4)?