Home
Class 12
MATHS
The fundamental period of the function y...

The fundamental period of the function `y=sin^2((sqrt(2)x+3)/(6pi))` is `lambdapi^2` then the value of `lambda/(sqrt(2))` is_____

Promotional Banner

Similar Questions

Explore conceptually related problems

The fundamental period of the function y=sin^(2)((sqrt(2)x+3)/(6 pi)) is lambda pi^(2) then the value of (lambda)/(sqrt(2)) is

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The period of the function f(x)=sin((2x+3)/(6pi)) , is

lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is 4pi , then the value of a is/are

lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is 4pi , then the value of a is/are

If the fundamental period of function f(x)=sin x+cos(sqrt(4-a^(2)))x is 4 pi, then the value of a is/are

If the fundamental period of function f(x)=sinx+cos(sqrt(4-a^(2)))x " is " 4pi , then the value of a is/are

If the fundamental period of the function cos(cos x)+sin(cos x) is (k pi)/(2) ,then the value of k=

The range of the function y=3sin(sqrt((pi^(2))/(16)-x^(2))) is

lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is 4pi , then the value of a is/are (a) sqrt(15)/2 (b) -sqrt(15)/2 (c)-sqrt(7)/2 (d) sqrt(7)/2