Home
Class 10
MATHS
If tan^(2)theta=1-e^(2), then prove tha...

If `tan^(2)theta=1-e^(2)`, then prove that `sectheta+tan^(3)theta"cosec"theta=(2-e^(2))^((3)/(2)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(2)theta=1-e^(2) prove that sec theta+tan^(3)theta cos ec theta=(2-e^(2))^((3)/(2))

If tan^(2)theta=1-m^(2) , then show that: sectheta+tan^(3)theta."cosec"theta=(2-m^(2))^(3//2)

If tan^(2)theta=1-m^(2) , then show that: sectheta+tan^(3)theta."cosec"theta=(2-m^(2))^(3//2)

If tan^2 theta=1-e^2 then prove that sec theta+tan^3 theta cosec theta=(2-e^2)^(3/2)

If tan^(2)theta=1-a^(2), prove that sec theta+tan^(3)theta csc theta=(2-a^(2))^((3)/(2))

If tan^2 theta= 1-e^2 prove that sec theta + tan^3 theta cosec theta = (2-e^2)^(3/2)

If tan ^2theta=1-e^2 , prove that, sectheta+tan^3thetacosec theta=(2-e^2)^(3/2) .

If tan theta=k , then show that sec theta+tan^(3)theta "cosec"theta=(1+k^(2))^((3)/(2)) .

If tan^2theta=1-e^2 ,Prove that sectheta+tan^3thetacosectheta=(2-e^2)^(3//2)

If tan^(2)theta = (1-e^2) show that sec theta + tan^(3). "cosec" theta = (2-e^(2))^(3//2) .