Home
Class 12
MATHS
Prove that: 3(sin x - cos x)^4 + 4 (sin^...

Prove that: `3(sin x - cos x)^4 + 4 (sin^6 x + cos^6 x) + 6 (sin x + cos x)^2 = 13`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : 3 (sin x - cos x)^4 + 6 (sin x + cos x)^2 + 4(sin^6 x + cos^6 x) = 13 .

Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

Prove that: 3 (sin x-cos x)^4+ 6 (sin x +cosx)^ 2+4 (sin^6 x+ cos^6 x) -13=0

Show that 3(sin x- cos x)^(4)+4 (sin ^(6)x+cos^(6)x)+ 6(sin x+cos x)^(2)=13

3(sin x + cos x )^(4) + 6(sin x - cos x )^(2) + 4(sin^(6) x + cos^(6) x )=

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

Prove that : sin 2x + 2 sin 4x + sin 6x = 4 cos^2 x sin 4x .

Show that : 2 (sin^6 x + cos^6 x) -3 (sin^4 x + cos^4 x) + 1 =0 .

Prove that sin 5 x cos 2x + cos 6 x sin 3 x = sin 8x cos x