Home
Class 11
MATHS
If x+i y=sqrt((1+i)/(1-i)), prove that x...

If `x+i y=sqrt((1+i)/(1-i))`, prove that `x^2+y^2=1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x + i y =(a+i b)/(a-i b), prove that x^2+y^2=1 .

If x+i y=(a+i b)/(a-i b) prove that x^2+y^2=1

If x+iy=(1+2i)/(2+i) prove that x^(2)+y^(2)=1

If x+iy=(2+i)/(2-i) then prove taht x^(2)+y^(2)=1

If x=(1+i)/sqrt2 , prove that x^2 = i

If x=1+i sqrt(3),y=1-i sqrt(3),z=2 then prove that x^(p)+y^(p)=z^(p) for every prime p>3

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If (x+i y)(p+i q)=(x^2+y^2)i , prove that x=q ,y=pdot

If (x+i y)(p+i q)=(x^2+y^2)i , prove that x=q ,y=pdot