Home
Class 12
MATHS
The condition that the equation ax^(2) +...

The condition that the equation `ax^(2) + 2hxy + by^(2) + 2gx + 2fy +c=0` can take the form `ax^(2) - 2hxy + by^(2)=0`, when shifting the origi is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the condition that the equation ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c = 0 to take the form aX^(2) + 2hXY + bY^(2) = 0 when the axes are translated.

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

The equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 repersents a hyperbola if

The equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 repersents a hyperbola if

If ax^(2) +2hxy + by^(2) + 2gx + 2fy + c = 0, find dy/dx.

The equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents a circle if

The equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents a circle if

If the pair of lines ax^(2) + 2hxy + by^(2)+ 2gx + 2fy + c = 0 intersect on the y-axis then